[54] J. Michl, K. C. Park, and P. Swietach, “Evidence-based guidelines for controlling pH
in mammalian live-cell culture systems,” Commun. Biol., vol. 2, no. 1, p. 144, 2019.
[55] H. F. George and F. Qureshi, “Newton’s Law of Viscosity, Newtonian and Non-
Newtonian Fluids,” in Encyclopedia of Tribology, Q. J. Wang and Y.-W. Chung,
Eds. Boston, MA: Springer US, 2013, pp. 2416–2420.
[56] F. Garcia-Ochoa and E. Gomez, “Bioreactor scale-up and oxygen transfer rate in mi-
crobial processes: An overview,” Biotechnol. Adv., vol. 27, no. 2, pp. 153–176, 2009.
[57] M. Popović, H. Niebelschütz, and M. Reuß, “Oxygen solubilities in fermentation
fluids,” Eur. J. Appl. Microbiol. Biotechnol., vol. 8, no. 1, pp. 1–15, 1979.
[58] E. Rischbieter, A. Schumpe, and V. Wunder, “Gas solubilities in aqueous solutions
of organic substances,” J. Chem. Eng. Data, vol. 41, no. 4, pp. 809–812, 1996.
[59] A. R. Lara, E. Galindo, O. T. Ramírez, and L. A. Palomares, “Living with het-
erogeneities in bioreactors,” Mol. Biotechnol., vol. 34, no. 3, pp. 355–381, 2006.
[60] A. R. Oller, C. W. Buser, M. A. Tyo, and W. G. Thilly, “Growth of mammalian
cells at high oxygen concentrations,” J. Cell Sci., vol. 94, no. 1, pp. 43–49, 1989.
[61] A. R. Lara et al., “Comparison of oxygen enriched air vs. pressure cultivations to
increase oxygen transfer and to scale-up plasmid DNA production fermentations,”
Eng. Life Sci., vol. 11, no. 4, pp. 382–386, 2011.
[62] A. Baez and J. Shiloach, “Effect of elevated oxygen concentration on bacteria,
yeasts, and cells propagated for production of biological compounds,” Microbial
Cell Factories, vol. 13, no. 1, p. 181, 2014.
[63] A. N. Emery, D. C. H. Jan, and M. Al-Rueai, “Oxygenation of intensive cell-culture
system,” Appl. Microbiol. Biotechnol., vol. 43, no. 6, pp. 1028–1033, 1995.
[64] J. C. Merchuk, A. Contreras, F. García, and E. Molina, “Studies of mixing in a
concentric tube airlift bioreactor with different spargers,” Chem. Eng. Sci., vol. 53,
no. 4, pp. 709–719, 1998.
[65] S. K. W. Oh, P. Vig, F. Chua, W. K. Teo, and M. G. S. Yap, “Substantial over-
production of antibodies by applying osmotic pressure and sodium butyrate,”
Biotechnol. Bioeng., vol. 42, no. 5, pp. 601–610, 1993.
[66] L. Xie et al., “Large-scale propagation of a replication-defective adenovirus vector
in stirred-tank bioreactor PER.C6™ cell culture under sparging conditions,”
Biotechnol. Bioeng., vol. 83, no. 1, pp. 45–52, 2003.
[67] D. Birch and N. Ahmed, “The Influence of sparger design and location on gas dis-
persion in stirred vessels,” Chem. Eng. Res. Des., vol. 75, no. 5, pp. 487–496, 1997.
[68] C. Sieblist, O. Hägeholz, M. Aehle, M. Jenzsch, M. Pohlscheidt, and A. Lübbert,
“Insights into large-scale cell-culture reactors: II. Gas-phase mixing and CO2
stripping,” J. Biotechnol., vol. 6, no. 12, pp. 1547–1556, 2011.
[69] X. Zhang et al., “Efficient oxygen transfer by surface aeration in shaken cylindrical
containers for mammalian cell cultivation at volumetric scales up to 1000L,”
Biochem. Eng. J., vol. 45, no. 1, pp. 41–47, 2009.
[70] T. Kumaresan and J. B. Joshi, “Effect of impeller design on the flow pattern and
mixing in stirred tanks,” Chem. Eng. J., vol. 115, no. 3, pp. 173–193, 2006.
[71] P. Vrabel, R. van der Lans, K. Luyben, L. Boon, and A. W. Nienow, “Mixing in
large-scale vessels stirred with multiple radial or radial and axial up-pumping im-
pellers: modelling and measurements,” (in English), Chem. Eng. Sci., vol. 55,
no. 23, pp. 5881–5896, 2000.
[72] A. W. Nienow and M. D. Lilly, “Power drawn by multiple impellers in sparged
agitated vessels,” Biotechnol. Bioeng., vol. 21, no. 12, pp. 2341–2345, 1979.
[73] P. M. Armenante and G.-M. Chang, “Power consumption in agitated vessels pro-
vided with multiple-disk turbines,” Ind. Eng. Chem. Res., vol. 37, no. 1,
pp. 284–291, 1998.
Upstream processing for viral vaccines
131